
CraFT (version 1.2)
user guide

Hervé Moulinec, Fabrice Silva

May 29, 2024



Contents

1 Introduction 5

2 CraFT Usage 6

3 Entering specifications of a given problem 8

3.1 Input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Scheme used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 File describing the microstructure . . . . . . . . . . . . . . . . . . . . 10

3.4 File describing the phases . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 File describing the materials . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Thermal strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6.1 Generalities about thermal strain in CraFT . . . . . . . . . . 12

3.6.2 The thermal strain is specified by an image file . . . . . . . . 13

3.6.3 The thermal strain is specified by a file giving ther thermal
strain per phase and time step . . . . . . . . . . . . . . . . . 14

3.7 Loading specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.7.1 loading condition . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7.2 Loading steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.8 Loading condition in temperature . . . . . . . . . . . . . . . . . . . 18

3.9 Output specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9.1 keyword: generic name . . . . . . . . . . . . . . . . . . . 19

3.9.2 keyword: xxx image . . . . . . . . . . . . . . . . . . . . . . 19

3.9.3 keyword: im_format . . . . . . . . . . . . . . . . . . . . . 21

3.9.4 keyword: xxx moment . . . . . . . . . . . . . . . . . . . . . 21

3.9.5 keyword: variables . . . . . . . . . . . . . . . . . . . . . 21

3.10 Specification of reference material CO . . . . . . . . . . . . . . . . . 22

3.11 Required accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



3.11.1 Equilibrium test . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.11.2 Test on loading conditions . . . . . . . . . . . . . . . . . . . . 24

3.11.3 Compatibility test . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11.4 How to enter required accuracy . . . . . . . . . . . . . . . . 26

4 Restoring a calculation 28

4.1 Defining save/restore points . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Restoring a calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Restore file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2 extracting data from a save/restore file . . . . . . . . . . . . 29

4.3.3 creating a save/restore file . . . . . . . . . . . . . . . . . . . 30

5 Digital images 31

5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 CraFT “i3d” format of images . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Simple legacy VTK file format . . . . . . . . . . . . . . . . . . . . . . 33

5.3.1 generalities on VTK files . . . . . . . . . . . . . . . . . . . . . 33

5.3.2 type of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.3 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Tools for handling and processing image files . . . . . . . . . . . . . 37

5.4.1 Basic mathematical operations on images . . . . . . . . . . . 37

5.4.2 Splitting a multi-component image into multiple scalar im-
ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.3 Conversion between CraFT format and simple legacy VTK
file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.4 Conversion of a VTK image to a ppm file . . . . . . . . . . . 39

A How to run CraFT 40

A.1 Case 1: inputs are described by configuration file micro01a.in in
“without keywords” format . . . . . . . . . . . . . . . . . . . . . . . 40

A.2 Case 2: inputs are described by configuration file micro01b.in in
“keywords format” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



A.3 Case 3: inputs are described by configuration file micro01c.in
in “keywords format”, loading and output specified directly in the
input file (instead of being described by files . . . . . . . . . . . . . 42

A.4 Case 4: problem specifications described one by one in a command
line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B File describing materials in CraFT 44

B.1 How to describe a void material . . . . . . . . . . . . . . . . . . . . . 45

B.2 How to describe a pressurized cavity . . . . . . . . . . . . . . . . . . 45

B.3 How to describe a linear elastic material . . . . . . . . . . . . . . . . 46

B.4 How to describe an elastic-perfectly-plastic von Mises material . . 50

B.5 How to describe an elastic-plastic von Mises material . . . . . . . . 52

B.6 How to describe a power law Elastic Visco-Plastic material . . . . . 55

B.7 How to describe a power law Elastic Visco-Plastic material with
kinematic linear hardening . . . . . . . . . . . . . . . . . . . . . . . 58

B.8 How to describe an elastic-plastic Gurson material . . . . . . . . . . 60

B.9 How to describe a Voce law . . . . . . . . . . . . . . . . . . . . . . . 64

B.10 How to describe the behavior of UO2 . . . . . . . . . . . . . . . . . 70

B.10.1 Constitutive equations of UO2 . . . . . . . . . . . . . . . . . 70

B.10.2 “Behavior” function . . . . . . . . . . . . . . . . . . . . . . . 70

B.10.3 solve_spc0e function . . . . . . . . . . . . . . . . . . . . . 71

B.10.4 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.10.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

C Examples 76

C.1 Examples of loading files . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1.1 example of creep loading . . . . . . . . . . . . . . . . . . . . 76

C.1.2 example of simple traction . . . . . . . . . . . . . . . . . . . 77

D Infinitesimal rotation tensor 78

3



1 Introduction

In this chapter, one will describe how to run CraFT, i.e. what sort of input data
CraFT needs, how to specify it to CraFT, what sort of output data are to be created,
and how these data (input and output) are organized.

To describe the mechanical problem, the user must:

• describe the geometry of the microstructure via an image telling which phase
each pixel belongs to,

• describe the mechanical behavior of each phase, this is done in CraFT via
two files:

- a file describing all materials present in the microstructure: the type of
behavior they obey (linear elasticity, elastic-perfectly plastic behavior,
...), and their peculiar mechanical properties (e.g. Young’s modulus and
Poisson coefficient in the cas of isotropic linear elasticity),

- a file telling for each phase which material it belongs to, and how the
material is oriented in that phase,

• describe the loading conditions,

• tell what outputs the user wants to store at the end of the computation, and
the name she/he wants to give to them,

• give some tuning parameters of the method:

- how to choose the reference material C0,

- precision required for convergence of the iterative process.



2 CraFT Usage

The user can run CraFT with -f option followed by the name of a file describing
the inputs required by CraFT:

craft -f inputfile

or, more simply, the user can type:

craft inputfile

See section 3.1, page 8 for more details on input file format.

An other possibility, is to specify every input parameters separately by using ad-
equate input options: -c -p -m -l -o -C -e

These options must be used together. Invoking them exclude use of -f options
(and vice versa).

Table (2.1) summarizes all possible options of craft command.



-h display help (this information)
-V displays CraFT version number
-v verbose mode

(default: non verbose)
[-f] <file> read inputs in file <file>
-c <file> characteristic function is given in file <file>
-p <file> phases described in file <file>
-m <file> materials described is given in file <file>
-l <file> loading conditions described in file <file>
-o <file> outputs described in file <file>
-r <file> restores a previous result stored in <file>
-C <line> C0 specified in command line <line>:

-C auto C0 is computed by craft (default)
-C param <λ> <µ> Lamé coefficients of C0 set to <λ> and <µ>

-e <prec1[,prec2[,prec3]> precision required:
* prec1: precision required for stress divergence
* prec2: precision required for loading conditions
* prec3: precision required for compatibility
If prec3 is omitted, it is set to be equal to prec2
If prec2 is omitted, it is set to be equal to prec1

-s <scheme> [<α> [<β>]] iterative scheme to be used:
0: basic scheme (Moulinec Suquet 1998) (default)
1: accelerated scheme (Eyre Milton 1999)
2: augmented lagrangian scheme (Michel et a 2000)
3: Monchiet-Bonnet scheme (Monchiet Bonnet 2011)
α and β are valid only for Monchiet-Bonnet scheme
if beta is omitted, it is set to be equal to α
if α is omitted, it is set to be equal to 1.5

-n <threads> number of threads used by OpenMP
-t <thermal strain file> either an image of the thermal strain field (if any)

supposed to be constant in time
or a file giving, for each phase and for each time step,
the value of the thermal strain which is supposed to be
uniform in the phase.
No thermal strain if option -t is omitted

Table 2.1: CraFT options
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3 Entering specifications of a given problem

3.1 Input file

The input specifications of a problem can be given to CraFT in a file, the name of
which is entered by -f option ( -f can be omitted).

Example:

craft -f toto.in

or, equivalently:

craft toto.in

Input file can:

• either contains a list of parameters a strict order (see below), this way of
entering the parameter is obsolescent,

• or can use keywords to enter specifications; in that case the different speci-
fications can be entered in any order.

The two formats for entering specs can not be mixed together.

In both cases, a line beginning with a # character is considered as a comment line.
An empty line (i.e. a line containing nothing or just white spaces) is ignored.

Format of input file without keywords (obsolescent):

In format without keywords, spec have to be entered strictly in the following
order:

• the name of an image file describing the microstructure

• the name of a file describing the phases of the microstructure

• the name of a file describing the materials the phases are made of

• the name of a file describing the loading conditions

• the name of a file in which the user specify the outputs she/he wants

• how to choose the “reference material” C0

• the required precision (i.e. the accuracy at which iterative processes for con-
vergence have to be stopped)



keywords arguments

microstructure the name of an image file describing the microstructure
phases the name of a file describing the phases of the microstructure
materials the name of a file describing the materials the phases are made of
loading the name of a file describing the loading conditions
temperature the name of a file describing the loading conditions in temperature
output the name of a file in which the user specify the outputs she/he wants
C0 how to choose the “reference material” C0

precision the required precision
scheme iterative scheme used (basic scheme, Eyre-Milton scheme,

augmented Lagrangian scheme or Monchiet-Bonnet scheme)
thermal strain name of the file describing the thermal strain field

Table 3.1: Keywords available in input files

An example of an input file without keywords is given in annex A.1, page 40.

This way of entering the parameters of the problem does not allow every pos-
sible options of CraFT. It is kept for backward compatibility reasons but is not
recommended.

Format of input file with keywords (recommended):

An input file using keywords contains lines beginning with one of the available
keywords (summarized in table 3.1). The keyword is followed by a = charac-
ter, and then by the specification itself. Case distinction is ignored in keywords.
Blanks are ignored.

An example of an input file with keywords is given in annex A.2, page 41.

For keywords accepting a file name as argument (i.e.: microstructure , phases,
materials , loading, temperature, thermal strain and output ), it is
also possible to directly enter the content of the file into the input file. In that case,
the keyword is followed by the content of the file enclosed by braces ( { and } ).

Example A.3 in page 42 illustrates this case.

3.2 Scheme used

keyword of the input file: scheme

The iterative scheme used by craft can be one of the following:

- basic scheme

- Eyre-Milton accelerated scheme (see Eyre & Milton in [8] for more details)

8



- accelerated scheme based on augmented Lagrangian (see Michel et al in [10]
and [13])

- Monchiet & Bonnet accelerated scheme (see Monchiet & Bonnet in [11])

As demonstrated in Moulinec & Silva in [17], Eyre-Milton scheme and Lagrangian
scheme are particular cases of Monchiet-Bonnet scheme, the scheme of Eyre and
Milton corresponding to the case when the parameters α and β of the scheme
of Monchiet and Bonnet are equal to 2 (α = β = 2), the augmented Lagrangian
scheme of Michel et al corresponding to the case when α = β = 1.

Important remark: we define the parameter β as the opposite (−β) of the one
defined by Monchiet & Bonnet to insure it to be positive.

In the craft input file, the scheme used is specified by scheme keyword, followed
by a number and by parameters α and β in the case of Monchiet & Bonnet scheme.

To choose the basic scheme, the user must write:

scheme=0

to choose the scheme of Eyre & Milton :

scheme=1

or, equivalently:

scheme=3 2. 2.

for the augmented Lagrangian scheme:

scheme=2

or, equivalently:

scheme=3 1. 1.

for Monchiet & Bonnet scheme:

scheme=3 α β

where α and β must be floating values. If omitted, β is set to be equal to α. If α is
omitted, it is set to be equal to 1.5 .

3.3 File describing the microstructure

keyword of the input file: microstructure

The microstructure of the problem treated is described by an image file in CraFT
format or in “simple legacy” VTK format.

In both format, each pixel of a microstructure image must contain the index of the
phase it belongs to.

(see section (5), page 31, for more details on digital images).
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#-------------------------------------------------------------
# phase material phi1 Phi phi2
#-------------------------------------------------------------

0 0 3.8135413 1.8862685 1.1466009
1 0 2.7503878 1.7827771 4.2127749
2 0 2.0567105 1.6476569 3.3482159
3 0 4.3410043 1.1427749 3.907608
4 0 3.5043039 1.4998321 4.8580132
5 0 4.4619361 1.6873032 6.1930471
6 0 4.028708 2.07412 5.1103068
7 0 2.2259622 1.4106619 1.8815486
8 0 1.0618022 2.0650686 0.89195132
9 0 4.6502682 1.5093459 5.475368

Figure 3.1: example of file describing the phases of a microstructure. All of the 10
phases are composed of the same material (whose id is 0) but do have different
crystalline orientations.

See www.vtk.org/VTK/img/file-formats.pdf for details on simple legacy
VTK file format.

3.4 File describing the phases

keyword of the input file: phases

Phases in the microstructure are described in an ascii file, in which every phase
in the microstructure is described by a line. First column gives the number of
the phase, second column gives the number of the material the given phase is
composed of, the next three colums give the orientation of the material in the
given phase by three Euler angles ϕ1,Φ, ϕ2 (see figure 3.2 for details).

Empty lines and lines beginning with # character are ignored by CraFT.

Remarks:

• A given phase is uniquely described by an id number.

• Phases are not necessarily numbered from 0 to n: phase file has just to de-
scribe every phase present in image file of the microstructure, however the
phases are numbered in the image.

• Phases in phase file can be more numerous that actual phases in microstruc-
ture image: the only prescription is that every phase in the microstructure
must be described in phase file.

3.5 File describing the materials

keyword of the input file: materials
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Figure 3.2: Euler angles with Bunge notations

A unique file describes all phases of the microstructure. This is an ascii file com-
posed of paragraphs each of which describing a given material.

Each paragraph begins with a line describing the id number of the material and
the id number of the constitutive law that the material obeys.

The next lines give the value of the parameters of the constitutive law; their num-
ber, types and order depending on the constitutive law and how it has been imple-
mented. For example, for an isotropic linear elastic behavior just two parameters
has to be entered: Young’s modulus and Poisson coefficient and for an elastic per-
fecftly plastic behavior, three parameters are required: Young’s modulus, Poisson
coefficient and yield stress.

Table 3.2 summarizes the ids of the different constitutive laws that have been
implemented till now.

Details of parameters to be entered for each behavior are given in appendix (B).

Empty lines are ignored and lines beginning with # character are considered as
comments by CraFT in material description files.

3.6 Thermal strain

keyword of the input file: thermal strain

3.6.1 Generalities about thermal strain in CraFT

A file describing the thermal strain can be optionally entered as input. In that
case, the constitutive relations are applied on the strain from which the thermal
strain has been previously subtracted.

If no thermal strain image is entered, it is supposed that there is no thermal strain
in the considered problem.

In the case of linear elasticity, the constitutive relation in the presence of a thermal
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id constitutive law

0 void

(1) (obsolete: use 10 instead) isotropic linear elasticity
(2) (obsolete: use 4 instead) elastic perfectly plastic behavior (with isotropic elasticity)
(3) (obsolete: use 10 instead) anisotropic linear elasticity
4 elastic plastic behavior (with isotropic elasticity)

10 linear elasticity

40 elasto visco-plastic behavior (von Mises plasticity, power law viscosity)
41 elasto visco-plastic behavior (von Mises plasticity, power law viscosity

with linear kinematic hardening )

50 Voce-type elasto-visco-plastic behavior
60 Gurson-type behavior

Table 3.2: CraFT identification numbers of constitutive laws. Obsolete behavior
ids are enclosed in parentheses.

strain denoted by εth(x) can be written as:

σ(x) = C : (ε(x)− εth(x))

In the general case of a constitutive relation described in the form:

σ(x) = F(ε(x), ...)

it becomes, in the presence of thermal strain:

σ(x) = F(ε(x)− εth(x), ...) .

The file entered to specify the thermal strain can either be an image of the thermal
strain fields, in which case the thermal strain field is supposed to be constant in
time, or it can be a file in which a given value of the thermal strain is specified
for each phase concerned, and for different time steps, in which case the thermal
strain is supposed to be uniform per phase, but to be able to change with time.

3.6.2 The thermal strain is specified by an image file

The thermal strain image must be a VTK file of 2d order tensors, i.e. with 6 double
precision scalar values per pixel/voxel (see 5.3).

The program pico is a useful tool for creating piecewise constant images of 2d
order tensors; it is included in the CraFT package.
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When an image of the thermal strain is entered as parameter of -t option, the
thermal strain is supposed not to change with temperature.

3.6.3 The thermal strain is specified by a file giving ther thermal strain per phase
and time step

The case of thermal strain being uniform per phase (i.e. the thermal strain has the
same value in every point of a given phase) but which can change with time, can
be chosen by the user by entering an ascii file organized as follows:

• the first line contains a list of phase identifiers. These phases are not nec-
essarily those present in the microstructure structure, and the phases in the
microstructure do not necessarily have to be present in the table.

• the following lines contains a time value in the first column, followed by
a number of values equal to the number of phases enumerated in the first
table, multiplied by 6, corresponding to the 6 components of the thermal
strain of each phase in the order presented in the first line. Warning: the
time values must be placed in ascending order. The 6 components of the
thermal strain are organized as follows: ε11, ε22, ε33, ε12, ε13, ε23.

• blank lines or lines beginning with a # character are ignored.

for a given time value t, the table of the thermal strain is explored and the 2 suc-
cessive time values ti and ti+1 surrounding t are determined, i.e.:

ti ≤ t < ti+1

then the thermal strain for time t is evaluated by a linear interpolation of the
thermal strain values at times ti and ti+1:

εth(t) = εth(ti) +
t− ti

ti+1 − ti

(
εth(ti+1)− εth(ti)

)
Example: The following table

17 23 38 45
0. 0.1 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0.1 0. 0. 0. 0. 0. 0. 0.1 0. 0.
10. 0.2 0. 0. 0. 0. 0. 0. 0.2 0. 0. 0. 0. 0. 0. 0.2 0. 0. 0. 0. 0. 0. 0.2 0. 0.
50. 0.3 0. 0. 0. 0. 0. 0. 0.3 0. 0. 0. 0. 0. 0. 0.3 0. 0. 0. 0. 0. 0. 0.3 0. 0.

means that phases number 17, 23, 38 and 45 are supposed to be subjected to a
uniform thermal strain whose 6 components are given for times t = 0, 10 and 50.
For example, phase 38 has a thermal strain of εth = (0., 0., 0.2, 0., 0., 0.) at time
t = 10. Phases other than phase 17, 23, 38 and 45 are assumed not to be subject to
any thermal strain ( εth = 0 ).

3.7 Loading specifications

keyword of the input file: loading

Files specifiying loading conditions consist in two parts:
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• loading condition (prescribed stress, prescribed strain or prescribed direc-
tion of stress)

• one or more lines describing every loading step(s)

3.7.1 loading condition

CraFT enables different loading conditions:

- prescribed macroscopic strain : macroscopic strain E is imposed

- prescribed macroscopic stress: macroscopic strain σ is imposed

- mixed conditions: some components of the macroscopic strain and the other
components of the macroscopic stress are prescribed

- prescribed direction of stress + prescribed strain in that direction: macro-
scopic stress σ has to be colinear to prescribed direction of stress σ0 and
the product of macroscopic stress and macroscopic strain, i.e. σ : E , is
prescribed.

Loading specification file begins with a line containing a letter:

- D : prescribed macroscopic strain

- C : prescribed macroscopic stress

- S : prescribed direction of stress

Mixed loading conditions are specified by entering 6 differents letters D or C (sep-
arated by blanks, commas or nothing) corresponding to the 6 components pre-
scribed. For example, DCCDDC means that strain components E11, E12 and E13

and stress components Σ22, Σ33 and Σ23 will be prescribed.

3.7.2 Loading steps

Loading steps may be specified step-by-step: a given line describes one given
step, or implied loops may be used to specify several steps in one line.

“Step-by-step” specification

A basic line of loading step specification comprises 8 values:

- the time value (for example in seconds), hereafter called t

- the 6 components of a symmetrical 2d order tensor, hereafter called d sup-
posed to be entered in the following order: 11, 22, 33, 12, 13, 23

- a scalar, hereafter called k

k and d do have different meaning depending on loading condition:

- in the case of prescribed macroscopic strain : macroscopic strain E at time t
is given by E = k.d
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- in the case of prescribed macroscopic stress: macroscopic stress Σ at time t
is given by Σ = k.d

- in the case of prescribed direction of stress, the macroscopic stress must be
colinear to d (in other words: d is the direction of stress) and the product of
the macroscopic strain by d must be equal to k: E : d = k

Important note: CraFT implies that at time t = 0, loading modulus k is null and
direction d is useless.

For example:

#-------------------------------------
# prescribed strain
D
#-------------------------------------
# loading
#t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
0.1 1. 0. 0. 0. 0. 0. 2.
#

In this file, macroscopic strain is prescribed, the loading consists in one step at
time: t = 0.1s, the macroscopic strain E must be equal to (E11, E22, E33, E12, E13, E33) =
(2, 0, 0, 0, 0, 0)

Implied loop specification

In the case of a monotonic loading, it can be tedious to enter the lines of every
required time steps, where the time values t and the loading modulus k change
regularly from one step to the next.

CraFT proposes an implied loop notation enabling to specify several time steps in
one line.

Implied loops are specified at the beginning of a line (before time value specifica-
tion). Two notations are possible:

- an integer value enclosed by : characters specifying the number of implied
loops between the time step of the preceding line (not included) and the
time step of the current line (included),

- a float value enclosed by % characters specifying the implied time steps be-
tween the time of the preceding line and the time step of the current line.

The time values t and the “loading modulus” k of the so-created loading steps are
supposed to be linearly interpolated between their value in previous line ant in
the current line; the directions d of the so-created loading steps are supposed to
equal to the one in the current line.

For example:
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#-------------------------------------
# prescribed strain
D
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
:10: 1. 1. 0. 0. 0. 0. 0. 10.
#

will create 10 loading steps form t = 0.1 to t = 1., with a modulus k varying form
k = 1. to k = 10. (as the previous time step is implicitely considered as t = 0 and
k = 0).

It would have been equivalently written as:

#-------------------------------------
# prescribed strain
D
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 1.
0.2 1. 0. 0. 0. 0. 0. 2.
0.3 1. 0. 0. 0. 0. 0. 3.
0.4 1. 0. 0. 0. 0. 0. 4.
0.5 1. 0. 0. 0. 0. 0. 5.
0.6 1. 0. 0. 0. 0. 0. 6.
0.7 1. 0. 0. 0. 0. 0. 7.
0.8 1. 0. 0. 0. 0. 0. 8.
0.9 1. 0. 0. 0. 0. 0. 9.
1.0 1. 0. 0. 0. 0. 0. 10.

or:

#-------------------------------------
# prescribed strain
D
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
%0.1% 1. 1. 0. 0. 0. 0. 0. 10.
#

as implied-time step is equal to 0.1, the number of implied loops between t = 0
(preceding line) and t = 1 (current line) is 1/0.1 = 10
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Examples of loading file are given in C.1.

3.8 Loading condition in temperature

keyword of the input file: temperature

The user can specify the evolution in time of the temperature conditions. The
temperature at a given time is supposed to be uniform in the volume.

The temperature loading can be entered in a file containing two columns for time
and temperature and an arbitrary number of lines. For example:

# Loading conditions in temperature
#
# time temperature
10. 100.
20. 200.
50. 250.
100. 260.

The values of time in this file do not have to match the time values present in
the file of the mechanical loading conditions (described above in section 3.7). The
temperature T at an arbitrary time t is calculated as follows:

• if t is lower than the lowest time value tmin in the temperature file, tempera-
ture T is set to the temperature corresponding to tmin,

• if t is greater than the greatest time value tmax in the temperature file, tem-
perature T is set to the temperature corresponding to tmax,

• in the other case, T is linearly interpolated using the temperatures of the two
values of time of the temperature file, between which t lays.

In other words, denoting ti and Ti the successive values in temperature file, sorted
in ascending values of time, with varying from 1 to n, one has:

T = T1 if t < t1
T = Tn if t ≥ tn
T = Ti + (t− ti)

Ti+1−Ti

ti+1−ti
if ti ≤ t < ti+1

(3.1)

Remark: The values in the file can be set in any order, the program will reorganize
it in ascending values of time.

3.9 Output specifications

keyword of the input file: output

Output specification files contain lines beginning with a keyword, which can be
composed of several words, followed by a = and one or several arguments.

Availables keywords are:
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- generic name

- xxx image (where xxx is the name of a mechanical variable (stress, strain,
...) to be stored as an image

- xxx moment (where xxx is the name of a mechanical variable (stress, strain,
...) whose first and second moments have to be calculated and stored for
each phase.

3.9.1 keyword: generic name

Argument following generic name is to be the lexical root of the names of all
output files. For example, if output spec file contains line:

generic name=foo

craft will build a foo.res file that contains macroscopic results at each step of
the loading path, a foo.perf file to display statistics about execution, etc ...

3.9.2 keyword: xxx image

Saving a field of a given variable as an image file

If the argument of keyword xxx image is yes (or if no argument is given), im-
age(s) of xxx field are to be created. If argument is no, no images are created.

xxx is the name of a mechanical variable; it can be common to all possible mechan-
ical behaviors; i.e. strain and stress, or it can be specific to a given behavior.
A list of variables available for image storing is given for every behavior (see ap-
pendix B).

The equivalent part or the trace of any tensor field can be designated to be stored
by preceding its name by keyword equivalent or trace, respectively. If the
name of the field contains the “strain” (respectively “stress”) substring, the
equivalent part is considered as an equivalent strain (respectively stress).

In addition, the field of the rotation can be saved as an image of 3D vector. For
more details see appendix (D).

Name of the image (output) file

The name of the image(s) to be created is built with the “generic name” followed
by _t= and the time (in the loading path) at which the image has been captured,
followed by the name of the variable and is ended by an extension depending on
the image format ( .vtk for VTK file format or .i3d for CraFT image format.

If the CraFT image format has been chosen, as it is not able to store any other field
as scalar fields , each of the components of a given tensor or vector is stored is a
separate file, whose name is ended by the number of the component: 11, 22, 33,
12, 13, 23 for a tensor, 001, 002, 003, ... for a vector.
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For example, the following output spec file:

generic name=foo
stress image=yes

will create images of the 6 components of the stress field at the last time step of
the loading path (let us say, at time 1s):

foo_t=01.00000000e+00_stress11.i3d,

foo_t=01.00000000e+00_stress22.i3d,

foo_t=01.00000000e+00_stress33.i3d,

foo_t=01.00000000e+00_stress12.i3d,

foo_t=01.00000000e+00_stress13.i3d,

foo_t=01.00000000e+00_stress23.i3d.

Saving images at different times of the loading path

If just yes is given argument, the image(s) is stored at the last step of the loading
path.

Moreover one can give the time(s) at which images are to be stored by entering a
list of time specifications separated by commas.

Time values can be filled either by their actual value (in seconds) or by the number
of their step in the loading path, in which case this number is entered as an integer
value preceded by an at sign character (@).

The time value of the first step of the loading path can be specified by first or
by begin (or by its actual time value).

The time value of the last step of the loading path can be specified by last or
end (or by its actual time value).

When two time specifications are separated by a colon character (:), images are to
be stored at each step of the loading path between these two extreme time values.
If a second colon character is entered and followed by a time value, this last value
is taken as a time step.

Examples

strain image = yes 10.,20, 30.:40.:@2, 45.:@100, @200

requires to store images of the strain tensor at times: t = 10s, t = 20s, once at
every two time steps between t = 30s and t = 40s, at every time steps between
t = 45s and the 100th steps, and at the 200th step of the loading path.

stress image=yes first:last
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requires to store images of the stress tensor at every steps of the loading path (i.e.
from the first step to the last one).

equivalent stress image=yes 180.:last:@2

requires to store an image of the equivalent stress once at every two steps, from
time t = 180s to the last step of the loading path.

rotation image=yes

requires to store an image of the rotation at the last step of the loading path. This
is a 3d vector image (see (D).

3.9.3 keyword: im_format

The format of the images which have to be stored as results of the computation
can be specified by keyword im_format.

• im_format=vtk

simple legacy VTK file format is prescribed

• im_format=i3d

CraFT image format is prescibed

• im_format=all

every image to be stored will be saved under both formats (VTK and i3d).

3.9.4 keyword: xxx moment

First and second moments of xxx variable has to be stored during calculation.

The syntax is similar to the one for image storage. The only difference, is that a
sole file will be created for each variable whose moments are required to be stored,
even if several times for storage are given.

Example:

generic name=foo
strain moment = yes 10.:20

will create a file named foo_strain.mom containing the first and second mo-
ments of the strain field in every phase, at every time steps between 10s and 20s.

3.9.5 keyword: variables

All variables describing the mechanical state of the material can be stored at given
times of the loading path using keyword variables.

The syntax is similar to the one for image storage.
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See chapter 4 for more details.

Example:

generic name=foo
variables = yes 10.:20, @40

will create files like foo_t=01.00000000e+00_variables.h5 containing the
variables in every phase, at every time steps between 10s and 20s, and at the 40th
loading step.

3.10 Specification of reference material CO

keyword of the input file: C0

The reference material C0 can be chosen:

- either automatically by entering: auto keyword (recommended)

- or explicitely by entering: param keyword followed the two Lamé coeffi-
cient of C0 ( C0 is an istropic linear elastic material).

3.11 Required accuracy

keyword of the input file: precision

The numerical method implemented in CraFT use an iterative process at each step
of the loading path. The convergence is reached when:

1 the equilibrium has been reached,

2 the loading conditions are satisfied,

2 the strain field statisfies compatibility conditions.

In practice, these criteria are evaluated by means of test functions, the results of
which are compared with values of the required accuracy.

3.11.1 Equilibrium test

Four different test functions are available to evaluate the deviation from equilib-
rium

0. Norm of the divergence of the stress

The modulus of the divergence of the stress field is computed in Fourier
space as:

∥div(σ)∥ =

√∑
ξ

|ξ.σ̂(ξ)|2 (3.2)
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and normalized by the Frobenius norm of the average stress as

equilibrium deviation =
∥div(σ)∥
∥ < σ > ∥

=

√∑
ξ |ξ.σ̂(ξ)|2

√
< σij >:< σij >

=

√∑
ξ |ξ.σ̂(ξ)|2√

σ̂ij(0) : σ̂ij(0)

(3.3)

(as the value at frequency 0 in Fourier space is equal to the average of the
considered field).

This value is compared to a value entered by the user. Equilibrium is as-
sumed to be reached when:

∥div(σ)∥
∥ < σ > ∥

< required_accuracy_for_divergence_of_stress

As explained in [19], this criterion is generally unnecessarily restrictive. To
put it simply, after some iterations, no useful additional information is ac-
cessible through further iterations, as the spatial discretization is insufficient
to capture the details needed to assess a better precision. Nevertheless, the
criterion 0 based on the divergence of the stress field remains high and may
decrease slowly with iterations.

1. Maximum value of the divergence of the stress (not recommended)

Another possible test of equilibrium consits in comparing the maximum
value of the divergence of the stress, in Fourier space, with a prescribed
accuracy.

equilibrium deviation =
maxξ ∥σ̂∥
∥ < σ > ∥

=
maxξ ∥σ̂∥
∥σ̂(0)∥

(3.4)

This criterion is even more restrictive than the previous one, and, for that
reason, it is not recommended.

2. Monchiet and Bonnet equilibrium test (not recommended)

In their article [11] propose an equilibrium test less restrictive than the two
previous ones. Although not recommended by the author of these lines, this
criterion can be used in CraFT. For more details, see [11] and section 4.2.3 of
[18].

3. Bellis equilibrium test (recommended)
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In his article of 2019 ([20]), Bellis introduced an equilibrium criterion based
on an ad-hoc energetic principle, which is implemented in CraFT code as

equilibrium deviation =
∥Γ0σ : C0 : Γ0σ∥
| < σ >:< ϵ > | 12

(3.5)

where C0 is the elastic modulus of the reference material (see 3.10), and
where Γ0 is the associated Green operator.

This criterion can be evaluated either in Fourier space as

equilibrium deviation =

∑
ξ

((
Γ̂0(ξ) : σ̂(ξ)

)
: C0 :

(
Γ̂0(ξ) : σ̂(ξ)

)) 1
2

|σ̂(0) : ϵ̂(0)| 12
(3.6)

or in real space as

equilibrium deviation =
< e : C0 : e >

1
2

| < σ >:< ϵ > | 12
(3.7)

(with e = Γ0σ).

3.11.2 Test on loading conditions

Basically, the iterative process enables to prescribe macroscopic strain by forcing
the strain field in Fourier space at null frequency to a given value.

Nevertheless, it is possible to prescribe macroscopic stress or to prescribe the di-
rection of macroscopic stress via a secondary iterative scheme which proposes, at
each iteration, a new macroscopic strain which is then imposed to the null fre-
quency of the strain field (see section 3.7). Thus, it has to be verified, at each
iteration, if prescribed loading conditions has been reached or not.

In the case of prescribed macroscopic stress, the iterative scheme is the following:

Ei+1 = Ei +C0
−1 : (Σ− < σi >)

where:

• Ei is the macroscopic strain at iteration i

• Σ is the prescribed macroscopic stress

• < σi > is the overall mean of the stress field at iteration i

• C0
−1 is the stiffness of reference material C0

and the convergence condition is:

∥Σ− < σi > ∥
∥Σ∥

< required_accuracy_for_loading_conditions
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In the case of prescribed direction of macroscopic stress, the iterative scheme is
the following:

C0
−1 : Ei+1 − ki+1Σ0 = C0

−1 : Ei− < σi >
Ei+1 : Σ0 = E(t)

where:

• Σ0 is the prescribed direction of macroscopic stress

• E(t) is the prescribed macroscopic strain in Σ0 direction (it is a scalar),

• < σi > is the overall mean of the stress field at iteration i

• ki+1 is a scalar to be computed

and the convergence condition is:

∥kiΣ0− < σi > ∥
∥kiΣ0∥

< required_accuracy_for_loading_conditions

3.11.3 Compatibility test

Compatibility conditions are guaranted when the “basic scheme” is used, but they
are not when one uses one of the ”’accelerated schemes”. In that case, one must
test the deviation form compatibility.

There are six compatibility relations to be satisfied:
∂2e11
∂x2

2
+ ∂2e22

∂x2
1
− 2 ∂2e12

∂x1∂x2
= 0 ,

∂2e22
∂x2

3
+ ∂2e33

∂x2
2
− 2 ∂2e23

∂x2∂x3
= 0 ,

∂2e33
∂x2

1
+ ∂2e11

∂x2
3
− 2 ∂2e13

∂x3∂x1
= 0 ,

∂2e11
∂x2∂x3

− ∂2e13
∂x1∂x2

− ∂2e12
∂x1∂x3

+ ∂2e23
∂x1∂x1

= 0 ,

∂2e22
∂x3∂x1

− ∂2e12
∂x2∂x3

− ∂2e23
∂x2∂x1

+ ∂2e13
∂x2∂x2

= 0 ,

∂2e33
∂x1∂x2

− ∂2e23
∂x3∂x1

− ∂2e13
∂x3∂x2

+ ∂2e12
∂x3∂x3

= 0 .

The deviation from compatibility can be easily evaluated in Fourier space by

ϵcompatibility =
maxξ(maxj=1,...,6(|ĉj(ξ)|))√∑

ξ êij(ξ) : êij
∗(ξ)

(3.8)

with

ĉ1(ξ) = −ξ2ξ2ê11(ξ)− ξ1ξ1ê22(ξ) + 2ξ1ξ2ê12(ξ) ,

ĉ2(ξ) = −ξ3ξ3ê22(ξ)− ξ2ξ2ê33(ξ) + 2ξ2ξ3ê23(ξ) ,

ĉ3(ξ) = −ξ1ξ1ê33(ξ)− ξ3ξ3ê11(ξ) + 2ξ3ξ1ê13(ξ) ,

ĉ4(ξ) = −ξ2ξ3ê11(ξ) + ξ1ξ2ê13(ξ) + ξ1ξ3ê12(ξ)− ξ1ξ1ê23(ξ) ,

ĉ5(ξ) = −ξ3ξ1ê22(ξ) + ξ2ξ3ê12(ξ) + ξ2ξ1ê23(ξ)− ξ2ξ2ê13(ξ) ,

ĉ6(ξ) = −ξ1ξ2ê33(ξ) + ξ3ξ1ê23(ξ) + ξ3ξ2ê13(ξ)− ξ3ξ3ê12(ξ) .
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Finally, the test on compatibility conditions is:

ϵcompatibility < required_accuracy_for_compatibility (3.9)

3.11.4 How to enter required accuracy

CraFT user has to enter three values of accuracy for the test on equilibrium, on
loading condtions and on compatibilty. These values must be entered separated
by a comma.

If the user enter just 1 value, this value is applied to the 3 required accuracies. If
the use enter just 2 value, the first is applied to the accuracy on equilibrium, the
second one is applied to the accuracu on loading conditions and on compatibility.

Examples:

precision=1.e-4,1.e-5,2.e-4

The accuracies on equilibrium is set to 10−4. The accuracy on loading conditions
is set to 10−5. The accuracy on compatibility is set to 2 10−4.

precision=1.e-4

The accuracies on equilibrium, loading conditions and compatibilty are set to
10−4.

precision=1.e-4,1.e-5

The accuracies on equilibrium is set to 10−4. The accuracy on loading conditions
is set to 10−5. The accuracy on compatibility is set to 10−5.

Two further experimental options can be added to precision option:

- an integer value specifying the test to be used on equilibrium:

• 0: test based on the quadratic norm of the divergence of the stress field
(equation 3.3) (default case),

• 1: test based on the maximum value of the divergence of the stress field,
in Fourier space (equation 3.4),

• 2: criterion proposed by Monchiet & Bonnet (see 2 ),

• 3: Bellis stopping criterion (see 3.6 ).

- an integer value specifying the maximum number of iterations allowed for
solving the Lippmann-Schwinger equations (the iterative process stops when
the number of iterations reaches this value).

Example:

precision=1.e-4,1.e-5,2.e-4,3,50
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The accuracies on equilibrium is set to 10−4. The accuracy on loading conditions
is set to 10−5. The accuracy on compatibility is set to 2 10−4. The equilibrium test
is the one given in (3.6). The maximum number of iterations allowed is 50.

Important remark: choice of the adequate equilibrium

The choice of the equilibrium is delicate and must be made carefully. The author
of these guide has a preference for the “Bellis” test and for the test based on the
stress divergence, but he suggests to the user to make his or her own choice by
testing different criteria and different required accuracy and, by comparison, to
determine the criteria best suited to the problem considered.
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4 Restoring a calculation

CraFT enables to define save/restore points from which it is possible to restart a
calculation.

A save/restore point consists in a file in which CraFT stores, at a given time of the
loading path, all what it needed to restart a calculation from that time to the end
of the loading (in practice: all the mechanical variables describing the state of the
material at that time).

Creating save/restore point file can be a concise way to store all the mechanical
fields in a single file; using program var2images being a simple way to extract
an image of a given field from a save/restore file.

4.1 Defining save/restore points

The user can define save/restore points at given times of the loading path using
a command line in the output specification file with variables keyword. The
syntax is very similar to the one to specify the storage of images or moments of
mechanical fields:

• variables=yes

will create a restore point file at the las time of the loading path.

• variables=no

no save/restore point file will be created.

• variables=yes <time specification>

will create save/restore point files at every times specified as argument.

Examples:

variables=yes 10.,20, 30.:40.:@2, 45.:@100, @200

creates save/restore point files at times: t = 10s, t = 20s, once at every two time
steps between t = 30s and t = 40s, at every time steps between t = 45s and the
100th steps, and at the 200th step of the loading path.

variables=yes begin:end:@10

creates save/restore point files once at every ten time steps between the beginning
and the end of the loading path.



4.2 Restoring a calculation

The user can restart a calculation using a save/restore point file. The calculation
will restart from the time of the save/restore point till the end of the loading path.

The syntax of the command line is the same as the one for a normal run of CraFT,
except that the option -r followed by the name of the save/restore file has to be
used.

Example:

craft -n 8 -f ex03.in -r ex03_t=08.02000000e-01_variables.h5

runs a calculation specified if input file ex03.in ( option: -f ex03.in), using 8
threads (option -n 8), from a save/restore point stored in file:

ex03_t=08.02000000e-01_variables.h5 .

4.3 Restore file format

4.3.1 file format

The format of the save/restore files can be either a format specific to craft or a
format using HDF5 (see http://www.hdfgroup.org/HDF5/ for more details).

The format to be used depends on the way craft has been compiled:

• hdf5 format file is used if craft has been compiled with:

use_HDF5=yes

set in options.in file

• a format file specific to CraFT is used if it has been compiled with:

use_HDF5=no

in options.in file

4.3.2 extracting data from a save/restore file

var2image program enables to extraxt an image file of a given mechanical field
from a save/restore file (whatevec is the save/restore file format).

Syntax:

var2image [-o imagefilenameprefix] variablefile field1 [field2 ... ]

extracts given field(s) from a given save/restore file, and stores the created im-
ages into image files (default output file names are herited from the name of the
save/restore file).

Example:

var2image ex03_t=05.00000000e-01_variables.dat stress
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will extract the stress field from save/restore file:

ex03_t=05.00000000e-01_variables.dat

and store it into an image file called:

ex03_t=05.00000000e-01_variables_stress.vtk

4.3.3 creating a save/restore file

Inversely, program images2var enables to create a save/restore file from images
of the mechanical fields.

Syntax:

images2var -c cfn -o vfn -t time --field1 spec1 [--field2 spec2 [...]]

Extracts fields from images file and store the created Variables structure, with time
stamp set to the given value, in vfn file.

Each field may be specified by an imagefile name:

--stress example_stress.vtk

or, in order to create an uniform field, by an explicit definition

--plastic "SCALAR 0."
--displacement "VECTOR3D 0. 1. 0."
--stress "TENSOR2 1. 2. 3. 4. 5. 6."
--backstress "VECTOR 4 0. 0. 0. 0."
(with the mention to the number of components)

Please note that the quote are mandatory.

It must be mentioned that all necessary fields must be put into the save/restore
file. Otherwise, craft will not be able to restart, and it will immediately fail with
an error message.
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5 Digital images

5.1 Generalities

A digital image is a set of physical points, called “pixels” in 2d and “voxels” in 3d
(although the author of this document does not like this word and prefers to use
“pixel” in 2d and in 3d), placed at the nodes of a regular grid of the space.

Thus, pixels are organized as a set of n1×n2×n3 points, each pixel being separated
from its previous neighbour along the k-th direction (k = 1, 2, 3) by a given pk

vector.

Remark: a 2d image can be considered as a 3d image whose third direction has a
1 pixel depth (n3 = 1).

Hence, the volume described in that way is a parallelepiped (and not necessarily
a cube nor even a rectangular parallelepiped as it is usually defined) as pk (k =
1, 2, 3) vectors are not necessarily orthogonal nor having same magnitude.

With the definition of the position s = (s1, s2, s3) of the first pixel in the list, the
coordinate in the euclidian space x = (x1, x2, x3) of each pixel can be got from its
position in the digital image i = (i1, i2, i3) (with i1 = 0, 1, ..., n1−1 , i2 = 0, 1, ..., n2−
1 , i3 = 0, 1, ..., n3 − 1

x = s+
∑

k=1,2,3 ik × pk

xl = sl +
∑

k=1,2,3 ik × pkl (k = 1, 2, 3)

(pkl being the l-th component of pk vector).

The data stored at each pixel could theoritically be of any kind: a scalar value, an
integer value, a vector, a tensor, ...

In practice, it depends on the way images are implemented.

5.2 CraFT “i3d” format of images

CraFT proposes a file format which allow to store images whose pixels contain
scalar values which can be: can only be scalars of type:

• signed 1-byte integer (char),

• unsigned 1-byte integer (unsigned char),



• signed integer (int),

• unsigned integer (unsigned int),

• floating point in simple precision (float)

• floating point in double precision (double)

A file in this format is a binary file (IEEE 754 arithmetic). It consists in a header
(the size of which depends on the case) followed by all the pixel values in the
order of increasing x1, x2 and x3.

The header comprises:

• 10 bytes describing the type of pixels the image contains:

HM2RS : floating values in single precision (coded in 4 bytes)

HM2RD : floating values in double precision (coded in 8 bytes)

HM2RI : integer values

HM2RUI : unsigned integer values

HM2RC : character values

HM2RUC : unsigned character values

HMRS : old (obsolete?) format for floating values in simple precision

• 20 bytes giving endianness of data values:

Big Endian : data values are coded in big endian format

Little Endian : data values are coded in little endian format

Following data in the header are supposed to be coded following the endi-
anness which has been declared here.

• header size (in bytes) : only in old HMRS format total size of the header

• n1 n2 n3 : the number of pixels in the 3 directions, given as integer values
coded in binary

• s1 s2 s3 : the coordinates of the first pixels of the image, given as double
precision real values coded in binary

• p11 p12 p13 p21 p22 p23 p31 p32 p33 : the 3 components of the step vectores along
the 3 directions, given as double precision real values coded in binary

( Caution: In the case of old HMRS format, step vectors are supposed to be
orthogonal, and just p11 p22 p33 are to be written here). the 3 components of
the step vectores along the 3 directions, given as double precision real values
coded in binary

Thus, except in the case of HMRS old format, the header comprises 138 bytes.

31



The pixel values are stored one after each other from the “first pixel” (i.e. the pixel
with coordinates x = (s1, s2, s3), i = (0, 0, 0)) to the last, i1 coordinate varying the
fastest, and i3 the slowest. In other words, pixels are stored in the following order:
i = (0, 0, 0), i = (1, 0, 0), i = (2, 0, 0), .. i = (n1 − 1, 0, 0),

i = (0, 1, 0), i = (1, 1, 0), i = (2, 1, 0), .. i = (n1 − 1, 1, 0),

i = (0, 2, 0), i = (1, 2, 0), ... i = (n1 − 1, 2, 0),

...

i = (n1 − 1, n2 − 1, 0), i = (0, 0, 1), i = (1, 0, 1), ... i = (n1 − 1, n2 − 1, n3 − 1)

What some people could call Fortran-like indexing...

5.3 Simple legacy VTK file format

5.3.1 generalities on VTK files

CraFT is able to read and write images formatted in simple legacy VTK format
with “STRUCTURED_POINTS” dataset.

The main advantage of using VTK file format instead of Craft format is its much
more common use. For example, images of this format can be visualized via well
known 3D visualization programs such as Paraview and Mayavi2.

Full details on simple legacy VTK format can be found in:

www.vtk.org/VTK/img/file-formats.pdf

(this document being taken from the VTK User’s Guide (published by Kitware
Inc)).

In few words:

- VTK files consist in a human-readable header followed by a set of pixels,

- the pixels of a VTK file image are placed on a regular grid whose axes are
orthogonal. In other words, the 3 vectors defined in 5.1 giving the spaces
between two consecutive pixels in each direction satisfy:

p1 = (p11, 0, 0), p2 = (0, p22, 0), p3 = (0, 0, p33)

- pixels can be stored either in ASCII or in binary format,

- pixels are stored in the same order as in CraFT format: pixels are ordered
with x1 increasing fastest, then x2, then x3,

- CraFT supposes that the data in VTK files are represented in IEEE 754 float-
ing point standard with big-endian byte ordering (although it is not clearly
explained in VTK documentation, according to the opinion of the author of
the present document).
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5.3.2 type of data

The pixel values of VTK files can be of the following types:

- char,

- unsigned char,

- int,

- unsigned int,

- long int,

- unsigned long int,

- float,

- double.

Remark: The case of complex values has not been taken into account by VTK
format, but images of double complex can be stored as images of double using
two double values per complex value (one for the real part and a second one for
the imaginary part).

The so-called “dataset attribute” in VTK files determine what set of data is stored
in each pixel.

dataset attribute: “scalars”

When using “scalars” attribute, there can be one or several scalar values (of the
same type) in each pixels. According to VTK documentation, there should not be
more than 4 scalars per pixel, nevertheless CraFT proposes an extension of this
and allows the use of a larger number of scalar values per pixels.

dataset attribute: “texture coordinates”

In the special cases of:

- symmetrical second order tensors,

- n-dimensional vectors,

- 2d-arrays,

CraFT can generate image files with VTK dataset attribute of type “texture coor-
dinates”, as this attribute allows to store multidimensional values. In the case of
symmetrical second order tensors (typically for strain or stress tensors), the com-
ponents are stored in the following order:

11, 22, 33, 13, 23, 12

Remark: Dataset attribute “tensors” would not have been appropriate as it only
allows 3x3 values, which is not adequate for symmetrical 2d order tensor, of
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which only 6 components need to be stored. Dataset attribute “scalars” allows
a number of components greater than 1, but this number theorically must not
be greater than 4 (although Paraview seems to accept a number of components
greater than 4).

dataset attribute: “vectors”

In the special cases of:

- 3d vectors,

CraFT can generate image files with VTK dataset attribute of type “vectors”. This
format allows to store 3-dimensional vectors.

Remarks on multi-component images

In the end, there are different ways to record an image with several scalar compo-
nents per pixel/voxel:

→ using “scalars” dataset attribute with more than one scalar,

→ using “texture coordinates” dataset attribute with multiple components,

→ using “vectors” dataset attribute in the case of 3 dimensional data.

5.3.3 example

An example of a simple Legacy VTK image in ascii is given in 5.1
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# vtk DataFile Version 3.0
craft output
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 32 32 1
ORIGIN 0.000000 0.000000 0.000000
SPACING 0.031250 0.031250 1.000000
POINT_DATA 1024
SCALARS scalars float
LOOKUP_TABLE default
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5.1: An example of a simple Legacy VTK image in ascii. This image
contains two disks which are almost visible in the text file (although the image
being seen upside down).
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5.4 Tools for handling and processing image files

Several companion programs are distributed with craft code for handling and
processing VTK or i3d image files.

5.4.1 Basic mathematical operations on images

The code ciop allow to apply some basic operations on i3d ou VTK images. These
operations are:

• addition,

• substraction,

• multiplication,

• division,

• raise to a power,

• test equal to,

• test greater than or equal to,

• test lower than or equal to,

• test greater than,

• test lower than.

The syntax is the following:

ciop image1-or-scalar1 operator image2-or-scalar2 [result-image]

where operator can be:

+ : for addition,

- : for substraction,

* or x: for multiplication,

/ : for division,

^ or ** : for raise to a power.

== : test equal to,

>= : test greater than or equal to,

<= : test lower than or equal to,

> : test greater than,

< : test lower than.
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The arguments of the operation may be scalars or images, but cannot be both
scalars.

In the case where the name of the resulting image is not specified, the standard
output is used for output image.

In the case where the input arguments are both images, they must have the same
number of components but can be of different data types, except in the case when
one image except in the case where one of the images has several components
per pixel/voxel and the other has only one. In this case, the component of the
second image is replicated in as many times as the first image has components,
the operation is then applied. For example, if an image contains a unique scalar
per pixel, when it is multiplied by a 6 component image (an image containing 2d
order tensors, for example), each component of each pixel of the second image is
multiplied by the scalar contained in the corresponding pixel of the first image.
This is a quite natural implementation of the multiplications tensors by scalars.
A less trivial example occurs when the operation applied is en addition: each
component of each pixel of the second image is added to the scalar contained in
the corresponding pixel of the first image. This is a quite natural implementation
of the multiplications tensors by scalars.

The output image is created with the type of higest rank of the two input images.
The order of priority is (from lower to higher priority):

char→ unsigned char→ int→ unsigned int→ long int→

unsigned long int→ float→ double→ double complex

Images with the data type vector3d, tensor2 or vector are equivalent to
double images and are considered with the same priority.

Caution: in order to avoid that the shell interprets the character *, it must be
enclosed in quotation marks.

Examples:

1. ciop hello.vtk + bonjour.vtk salut.vtk

The pixels of images hello.vtk and bonjour.vtk are added and stored
in resulting image salut.vtk.

2. ciop hello.vtk + bonjour.vtk > salut.vtk

does the same (but it uses the standard output as output, and redirect it to
salut.vtk file).

3. ciop 2. ’*’ a.vtk res.vtk

The pixels of image a.vtk are multiplied by 2. and stored in image res.vtk.

4. ciop a.vtk ^ 0.5 res.vtk
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The pixels of image a.vtk are raised to the power of 0.5 and stored in image
res.vtk.

5.4.2 Splitting a multi-component image into multiple scalar images

A VTK image of a multicomponent field, i.e.

• 2d order tensor field,

• 3D vector field,

• field of multiple scalars,

can be splitted into VTK images of scalar fields , one per component, using:
vtk_split program.

Syntax:

vtk_split [-f format] image

(format can be either i3d or vtk, depending on the format required for the
output images).

5.4.3 Conversion between CraFT format and simple legacy VTK file format

Two programs are available with craft distribution to convert from one format to
the other:

• i3dtovtk : to convert from so-called“i3d” CraFT format to VTK format
(either in binary or in ASCII format)

• vtktoi3d : to convert from VTK format to so-called“i3d” CraFT format

Type i3dtovtk -h and vtktoi3d -h in a unix terminal to get more details on
how to use these programs.

Remark: i3dtovtk can also be used for converting a vtk file into a vtk file, from
ASCII format to binary format or vice-versa.

5.4.4 Conversion of a VTK image to a ppm file

• vtk2ppm : to convert an image in VTK format to an image in PPM format.

This is useful to get images ready to use for a publication or a web page.

PPM images can easily be transformed in any common file format using programs
available on the internet.
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Appendix A How to run CraFT

Following examples shows different ways to run craft for the following problem:

- microsctructure described by image file: micro01.ima

- phases in microstructure described by file:micro01.phases

- material(s) in microstructure described by file: micro01.mat

- loading conditions described by file: traction.dat

- required outputs described by file: micro01.output

- reference material C0 chosen by CraFT

- required precision: 1. 10−4

A.1 Case 1: inputs are described by configuration file
micro01a.in in “without keywords” format

CraFT can be run using micro01a.in configuration file:

#-------------------------------------------------
# HM 30/12/2010
# file: micro01a.in
#
#-------------------------------------------------
# image file describing the microstructure:
micro01.ima

# file describing the different phases in the
# microstructure:
micro01.phases

# file describing the mechanical behavior of
# the different components of the material:
micro01.mat

# file describing loading conditions:
traction.dat

# file describing the selected outputs:
micro01.output



# choice of C0:
auto

# required precision:
1.E-4
#-------------------------------------------------

by typing following command line:

craft -f micro01a.in

or, alternately, by typing:

craft < micro01a.in

A.2 Case 2: inputs are described by configuration file
micro01b.in in “keywords format”

CraFT can be run using micro01b.in configuration file:

#--------------------------------------------------
# HM 30/12/2010
# file: micro01b.in
#
#--------------------------------------------------
# file describing the mechanical behavior of the
# different components of the material:
Materials=micro01.mat

# file describing the different phases in the
# microstructure:
Phases=micro01.phases

# image file describing the microstructure:
Microstructure=micro01.ima

# file describing loading conditions:
loading=traction.dat

# choice of C0:
C0=auto

# required precision:
precision = 1.E-4

# file describing the selected outputs:
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output = micro01.output

#--------------------------------------------------

by typing following command line:

craft -f micro01b.in

A.3 Case 3: inputs are described by configuration file
micro01c.in in “keywords format”, loading and output
specified directly in the input file (instead of being described
by files

#--------------------------------------------------
# HM 30/12/2010
# input file micro01c.in
#--------------------------------------------------
# file describing the mechanical behavior of the
# different components of the material:
Materials=micro01.mat

# file describing the different phases:
Phases=micro01.phases

# image file describing the microstructure:
Microstructure=micro01.ima

# loading conditions:
loading {
S
1. 1 0 0 0 0 0 1.
}

# choice of C0:
C0=auto

# required precision:
precision = 1.E-4

# file describing the selected outputs:
output {
generic name=micro01c
stress image = yes
strain image = no
}
#--------------------------------------------------
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A.4 Case 4: problem specifications described one by one in a
command line

craft -c micro01.ima -p micro01.phases -m micro01.mat \
-l traction.dat -o micro01.output -C auto -e 1.E-4
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Appendix B File describing materials in CraFT

The first line of every given material specification consists in the identifier of this
material (it is a integer value defining uniquely a given material) followed by the
number describing its behavior (see table 3.2).



B.1 How to describe a void material

Behavior identifier: 0

No parameters to be entered for void materials.

Example:

#---------------------------------------------------------
# Mat. #17 is a void material
17 0
#no further parameters are required
#---------------------------------------------------------

B.2 How to describe a pressurized cavity

Behavior identifier: 70

The user enters a pressure P , which means that a value of −PI is set inside the
cavity, where I is the identity tensor.

The pression in the cavity may evolve. So the pression is given through a table
containing the time and the pression. A linear interpolation is done between two
values. For any times after the last value entered in the table the pression, the
pressure is considered to be constant and egal to the last value entered. Before to
enter the table, the number of lines of the table has to be given.

Example:

#---------------------------------------------------------
# Mat. #1 is a pressurized cavity
1 70
#size of the table
3
#table containing the time and the pressure
0.0 0.0
1.0 0.5
2.0 0.75
#---------------------------------------------------------
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B.3 How to describe a linear elastic material

Behavior identifier: 10

A linear elastic (either anisotropic or isotropic) material is described in CraFT
through its stiffness matrix. However the full specification of its 21 independant
coefficients may be avoided if the material has some symmetry, simplifying the
input arguments.

Specification

The material can be specified by an integer value amongst the different possible
values:

0 : the full stiffness matrix has to be entered

1 : isotropic case

2 : cubic symmetry

3 : hexagonal symmetry

4 : orthotropic symmetry

Case 0: stiffness matrix entirely specified The stiffness matrix has to be entered
by its upper triangular part using Kelvin notations. I.e. if the stress tensor σ is
represented as a vector of 6 components: (σi)1≤i≤6 with:

σ1 = σ11

σ2 = σ22

σ3 = σ33

&


σ4 =

√
2σ23

σ5 =
√
2σ13

σ6 =
√
2σ12

and if the strain tensor ε is represented by a 6 component vector:
ε1 = ε11
ε2 = ε22
ε3 = ε33

&


ε4 =

√
2ε23

ε5 =
√
2ε13

ε6 =
√
2ε12

The stiffness tensor can be represented as the matrix C as follows:
σ1

σ2

σ3

σ4

σ5

σ6

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 .


ε1
ε2
ε3
ε4
ε5
ε6
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or: 

σ11

σ22

σ33√
2σ23√
2σ13√
2σ12

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

 .



ε11
ε22
ε33√
2ε23√
2ε13√
2ε12


The upper triangular part of the matrix is entered into CraFT like that:

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

Examples:

#---------------------------------------------------------
# Mat. #15 is an anisotropic Linear Elastic material
15 10
# its stiffness matrix will be entered:
0
# stiffness matrix:
13930. 7082 5765 0. 0. 0.

13930. 5765 0. 0. 0.
15010. 0. 0. 0.

6028. 0. 0.
6028. 0.

6828.
#---------------------------------------------------------

Case 1: isotropic case In this case, the behavior of material is supposed to be
isotropic linear elasticity. The user has to enter:

• the Young’s modulus: E

• the Poisson coefficient: ν

The stiffness matrix is calculated as:
λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ
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where λ and µ are the Lamé coefficients which are related to the input parameters
by

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
. (B.1)

Example:

#---------------------------------------------------------
# Mat. #32 is an linear elastic material
32 10
# ... and it is isotropic:
1
# Young’s modulus:
10.
# Poisson coefficient:
0.23
#---------------------------------------------------------

Case 2: cubic symmetry In the case cubic symmetry, the user has to enter the
following parameters:

• bulk modulus K

• µ1

• µ2

the stiffness matrix being then calculated as:
(3K + 4µ1)/3 (3K − 2µ1)/3 (3K − 2µ1)/3 0 0 0
(3K − 2µ1)/3 (3K + 4µ1)/3 (3K − 2µ1)/3 0 0 0
(3K − 2µ1)/3 (3K − 2µ1)/3 (3K + 4µ1)/3 0 0 0

0 0 0 2µ2 0 0
0 0 0 0 2µ2 0
0 0 0 0 0 2µ2


Case 3: hexagonal symmetry In the case hexagonal symmetry, the user has to
enter the following parameters:

• bulk modulus K

• µt

• µl

• El

• νl

the stiffness matrix being then calculated as:
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K + µt K − µt 2νlK 0 0 0
K − µt K + µt 2νlK 0 0 0
2νlK 2νlK El + 4ν2

l K 0 0 0
0 0 0 2µl 0 0
0 0 0 0 2µl 0
0 0 0 0 0 2µt


Case 4: orthotropic symmetry In the case of orthotropic symmetry, the user has
to enter the following parameters:

• 3 Young’moduli: E1, E2, E3

• 3 Poisson coefficients: ν12, ν13, ν23

• 3 shear moduli: µ12, µ13, µ23

the stiffness matrix being then calculated as
E1(1− ν23ν32)/k E1(ν23ν31 + ν21)/k E1(ν21ν32 + ν31)/k 0 0 0
E2(ν13ν32 + ν12)/k E2(1− ν13ν31)/k E2(ν12ν31 + ν32)/k 0 0 0
E3(ν12ν23 + ν13)/k E3(ν13ν21 + ν23)/k E3(1− ν12ν21)/k 0 0 0

0 0 0 2µ23 0 0
0 0 0 0 2µ13 0
0 0 0 0 0 2µ12


with:

k = 1− ν23ν32 − ν12ν21 − ν13ν31 − ν12ν23ν31 − ν21ν32ν13

ν21 = ν12E2/E1, ν32 = ν23E3/E2, ν31 = ν13E3/E1.

Implementation

Despite the apparent simplification of the stiffness matrix, the orientation of the
phases may lead to a dense matrix for non trivial Euler angles, so that all but
isotropic case are handled but applying the full matrix multiplication σi = Cijεj ,
after rotation of the stiffness matrix according to the orientation of the phase.

List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor

48



B.4 How to describe an elastic-perfectly-plastic von Mises material

Behavior identifier: 2

The case of an elastic-perfectly-plastic material with von Mises yield criterion (the
linear elastic part is assumed to be isotropic) is governed by the equations

σ = L : (ε− εp)

ε̇p =
3

2
ṗ
σd

σeq
with ṗ =

√
2

3
ε̇p : ε̇p

σeq ≤ σ0

(B.2)

where L is the isotropic linear elastic stiffness tensor (defined by E and ν), εp is
the (deviatoric) plastic strain, ε̇p its time derivative, σd and σeq are the deviatoric
part of the stress and the von Mises stress, and p denotes the hardening parameter
(that coincides with the cumulated plastic strain), respectively.

Specification

The user has thus to enter the following parameters:

• Young’s modulus E

• Poisson coefficient ν

• Yield stress σ0

Example:

#---------------------------------------------------------
# Mat. #8 is an elastic-perfectly-plastic material
8 2
# Young’s modulus:
10.
# Poisson coefficient:
0.23
# Yield stress:
1.2
#---------------------------------------------------------

Implementation

The algorithm, given in full details in [2] (Appendix C) , is recalled here. The von
Mises yield criterion suggests that the plastic strain only increases when the von
Mises stress reaches a critical value known as the yield stress. The first step is then
to check whether, for a varying load, the change in stress is only due to a change
of the elastic strain or whether the plastic strain has increased. Using a backward
finite difference scheme at time step n+ 1, Eq. (B.2) leads to

σn+1 = σn +L : (εn+1 − εn)− 2µε̇p(n+1)∆t = σT − 2µε̇p(n+1)∆t (B.3)
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where σT denotes the elastic trial stress:

σT = σn +L : (εn+1 − εn) (B.4)

If this latter is within the yield surface (i.e. when σeq
T < σ0), the deformation is

elastic and σn+1 = σT . If not, Eq. (B.3) expands to

σd
n+1 = σd

T − 2µε̇p(n+1)∆t = σd
T − 3µṗ∆t

σd
n+1

σeq
n+1

(B.5)

σd
n+1

(
1 + 3µṗ∆t/σeq

n+1

)
= σd

T (B.6)

i.e. σd
n+1 is colinear to σT , enabling the use of the radial return algorithm. While

yielding (without hardening), the von Mises stress is limited to the yield stress, so
σd

n+1 = (σ0/σ
eq
T )σT . The last step is to restore the hydrostatic component

σn+1 = σd
n+1 +

1

3
tr(σn+1)I with tr(σn+1) = (3λ+ 2µ) tr(εn+1). (B.7)

List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor
previous stress stress tensor of the previous step
previous strain strain tensor of the previous step

The material behavior has not been implemented for accelerated schemes (see
section 3.2), use behavior 4 with flag 0 (corresponding to the elastic-perfectly-
plastic case) instead.
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B.5 How to describe an elastic-plastic von Mises material

Behavior identifier: 4

The case of an elastic-plastic material with von Mises yield criterion and linear
isotropic hardening is derived from the previous case, but with a yield surface
expanding during the plastic flow:

σ = L : (ε− εp)

ε̇p =
3

2
ṗ
σd

σeq
with ṗ =

√
2

3
ε̇p : ε̇p

σeq ≤ σ0(p)

(B.8)

Specification

The user has to enter the following parameters:

• Young’s modulus

• Poisson coefficient

• A flag telling the hardening type:

0: without hardening σ0(p) = σy (redundant with Sec. B.4). The user has
then to enter the yield stress σy.

1: with linear hardening σ0(p) = σy +Hp. The yield stress σy and then the
plastic modulus H have to be provided.

2: with tabulated values of the hardening. The dependance of the isotropic
hardening σ0 with respect to the cumulated plastic strain p is specified
through a table. The user has to give the number of points of the table,
then a list of pairs of points defining the isotropic hardening criterion,
for example:

# Number of points
4
# Pairs of points
# (p, sigma0)
0. 10.0
1. 10.1
3. 11.5
5. 12.0

0 1 2 3 4 5 6 7
p

8

9

10

11

12

13

14

σ
0
(p

)

The extrapolation beyond the last pair is based on the last segment.

Examples of material specifications:

- Elastic perfectly plastic material:
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#---------------------------------------------------------
# Mat. #8 is an elastic-perfectly-plastic material
# (no linear hardening)
8 4 0
# Young’s modulus:
10.
# Poisson coefficient:
0.23
# Yield stress:
10
#---------------------------------------------------------

- Elastic plastic material with linear hardening:

#---------------------------------------------------------
# Mat. #8 is an elastic-plastic material
# with linear hardening
8 4 1
# Young’s modulus:
10.
# Poisson coefficient:
0.23
# Yield stress:
10
# Plastic modulus:
0.3
#---------------------------------------------------------

- Elastic plastic material with hardening specified by a table of values:

#---------------------------------------------------------
# Mat. #8 is an elastic-plastic material
# with tabulated hardening
8 4 2
# Young’s modulus:
10.
# Poisson coefficient:
0.23
# Tabulated hardening:
# Number of points
4
# Pairs of points
# (p, sigma0)
0. 10.0
1. 10.1
3. 11.5
5. 12.0
#---------------------------------------------------------
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Implementation

The algorithm is quite the same as the one of the elastic-perfectly plastic von Mises
material, except that it is necessary to track the evolution of the yield surface using
the cumulated plastic strain p. In fact the von Mises stress σeq

n+1 is not bounded to
a static value anymore, and the explicit value of p has to be calculed.

The trial von Mises stress σeq
T has then to be compared with σ0(pn). If smaller, the

yield surface is not reached and then does not grow: pn+1 = pn and σn+1 = σT .
If bigger, the increase of the plastic strain and the associated grow of the yield
surface (null in the perfectly plastic case) have to be computed solving the implicit
equation

σ0(pn+1) + 3µpn+1 = σeq
T + 3µpn (B.9)

according to the specified hardening law σ0(p). The determination of pn+1 allows
to apply the radial return procedure

σd
n+1 = (1− 3µ∆t (pn+1 − pn))σ

d
T (B.10)

and then restore the hydrostatic component (same as in Sec. B.4).

List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor
plastic cumulated plastic strain (*)
previous stress stress tensor of the previous step
previous strain strain tensor of the previous step
previous plastic cumulated plastic strain of the previous loading step (*)

(*): available only in presence of hardening but not in perfectly plastic case. This
constutive equation has been implemented for accelerated iterative schemes (see
3.2).
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B.6 How to describe a power law Elastic Visco-Plastic material

Behavior identifier: 40

A power law Elastic Visco-Plastic material (the linear elastic part being supposed
to be isotropic) is subjected to the equations

σ = L : (ε− εvp),

ε̇vp = ε̇0
3

2

(
σeq

σ0

)N
σd

σeq
.

In the following, we will consider that ε̇0 is equal to 1 , or, equivalently, that it has
been incorporated into σ0. Thus, the constitutive relation reads:

σ = L : (ε− εvp),

ε̇vp =
3

2

(
σeq

σ0

)N
σd

σeq
.

(B.11)

Specification

the user has to enter the following parameters:

• Young’s modulus E,

• Poisson coefficient ν,

• Yield stress σ0

• exponent of the power N .

Example:

#---------------------------------------------------------
# Mat. #86 is a power law Elastic Visco-Plastic material
86 40
# Young’s modulus:
10.
# Poisson coefficient:
0.23
# Yield stress:
1.2
# exponent of the power law:
1.1
#---------------------------------------------------------
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Implementation

Denoting σT = σn−1+L : (εn−εn−1) the trial stress and sT its deviatoric compo-
nent, the use of a backward finite difference scheme at time n in Eq. (B.11) reads
as

σn − σn−1

∆t
= L :

(
εn − εn−1

∆t

)
−L : ε̇vpn (B.12)

which leads to

σd
n = sT − 2µ∆tε̇vpn = sT − 3µ∆t

(
σeq
n

σ0

)N
σd

n

σeq
n

. (B.13)

If the trial stress is hydrostatic (seqT = 0), the same applies to σn; otherwise the
resolution of

σeq
n + 3

µ∆t

σ0N
(σeq

n )N = seqT (B.14)

is performed using the Müller method1 and gives σeq
n , the radial return method

applies ( σd
n = (σeq

n /seqT )sdT ). In either case, the hydrostatic part has to be restored
(same as Eq. (B.7)).

Implementation (accelerated schemes)

When an accelerated scheme is used for solving the Lippmann-Schwinger equa-
tion, one has to solve the following problem: find σ and ε such that B.11 and

σ +C0 : ε = τ

are satisfied, with τ being a field of pre-stress, supposed to be known.

So, one has 
σn − σn−1

∆t
= L :

(
εn − εn−1

∆t

)
−L : ε̇vpn

σn +C0 : εn = τ

thus {
σn = σn−1 +L :

(
εn − εn−1

)
−L : ε̇vpn ∆t

εn = S0 :
(
τ − σn

)
( with S0 = C0−1){(

I +L : S0
)
: σn = σn−1 −L : εn−1 +L : S0 : τ −L : ε̇vpn ∆t

εn = S0 :
(
τ − σn

)
Denoting σT as

σT = σn−1 −L : εn−1 +L : S0 : τ (B.15)
1 D. Müller, A Method for Solving Algebraic Equations Using an Automatic Computer, Math.

Tables Aids Comp. 10 No.56 (1956), pp. 208-215.
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this reads {(
I +L : S0

)
: σn = σT −L : ε̇vpn ∆t

εn = S0 :
(
τ − σn

)
and finally 

(
I +L : S0

)
: σn = σT −∆t L :

3

2

(
σeq
n

σ0

)N
σd

n

σeq
n

εn = S0 :
(
τ − σn

) (B.16)


(
I +L : S0

)
: σn = σT − 3

2

(σeq
n )N−1

(σ0)N
∆t L : σd

n

εn = S0 :
(
τ − σn

) (B.17)

When L and C0 are isotropic, this leads to

(
1 + µ/µ0 + 3µ∆t

(σeq
n )N−1

(σ0)N

)
σd

n = sT (B.18)

which leads to the non linear scalar equation of unknown σeq
n

3µ∆t

(σ0)N
(σeq

n )N +
(
1 + µ/µ0

)
σeq
n − σT

eq = 0 (B.19)

This brings us back to a set of equations very similar to the one of the previous
section, which can be solved using the radial return algorithm with the non-linear
scalar equation B.19 to be solved.

List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor
previous stress stress tensor of the previous step
previous strain strain tensor of the previous step
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B.7 How to describe a power law Elastic Visco-Plastic material with
kinematic linear hardening

Behavior identifier: 41

The case of a power law Elastic Visco-Plastic material with kinematic linear hard-
ening whose constitutive law is described by:

σ = L : (ε− εvp),

ε̇vp =
3

2
ṗ
(σ −X)d

(σ −X)eq
, with ṗ =

〈
(σ −X)eq − σl

D

〉N

X =
2

3
Hεvp.

(B.20)

where ⟨.⟩ denotes the Macauley bracket and X is the backstress tensor (that is
used to describe the kinematic hardening). An interesting review is given in [1].
The linear elastic part being supposed to be isotropic.

Specification

The user has to enter the following parameters in that order:

• Young’s modulus E

• Poisson coefficient ν

• drag stress D

• exponent of the power law n

• linear hardening coefficient H

• yield stress σl

Example:

#---------------------------------------------------------
# Mat. #84 is a power law Elastic Visco-Plastic
# material with kinematic linear hardening
84 41
# Young’s modulus and Poisson coefficient
5500. 0.33
# Drag stress
25.
# exponent of the power law:
7.
# linear hardening coefficient:

1 J.L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plas-
ticity 24 No.10 (2008), pp. 1642-1693.
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2200.
# Yield stress:
50.
#---------------------------------------------------------

Implementation

The yielding is triggered according to the value of the tensor field Y = σ−X . The
backward finite difference scheme at time n in Eq. (B.20) leads to

Y = L : ε− 2µεvp −X = L : ε− 2

3
(H + 3µ)εvp ⇒ Y n = σT − 2

3
(H + 3µ)∆tε̇vp

with the trial stress:

σT = σn−1 −Xn−1 +L : (εn − εn−1) (B.21)

Expanding the viscoplastic strain, it appears that Y d
n is colinear to the deviatoric

part of the trial stress with

Y eq
n + (H + 3µ)∆t

〈
Y eq
n − σl

D

〉N

= σeq
T . (B.22)

The radial return method applies to Y d
n. It should be noted that the storage of the

backstress X can be avoided as X = H/(3µ)
(
2µεd − σd

)
, so that

σd
n =

3µ

H + 3µ

(
Y d

n +
2H

3
εdn

)
, (B.23)

and the last step is to restore the hydrostatic part (same as Eq. (B.7)).

List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor
previous stress stress tensor of the previous step
previous strain strain tensor of the previous step
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B.8 How to describe an elastic-plastic Gurson material

Behavior identifier: 60

The case of an elastic-perfectly-plastic material with Gurson yield criterion (the
linear elastic part is assumed to be isotropic) is governed by the equations (were
f is the porosity and Pb the pressure inside the cavities):

F (σ) = q3

(
σeq

σ0

)2

+ 2q1fcosh

(
3σm

2σ0

)
− 1− (q1f)

2

σ = L : (ε− εp)

(B.24)

Specification

The user has to enter the following parameters:

• Young’s modulus

• Poisson coefficient

• Yield stress (σ0)

• q3 coefficient

• q1 coefficient

• A flag telling the choice for the porosity evolution type:

1: with no porosity evolution. The user has to enter the porosity value f ,
which will be kept constant during the whole calculation.

2: with linear porosity evolution. The user has to enter the initial porosity
value f0 and the porosity slop f1, the porosity f evolve linearly with
the time f = f0 + f1t.

3: with tabulated values of the porosity. The evolution of porosity with
the time is specified through a table. The user has to give the number
of points of the table, then a list of pairs of points defining the poros-
ity evolution with the time. Linear extrapolation is done between two
points.

5: with calculated values of the porosity. The evolution of porosity is
linked to the trace of the plastic strain through the equation : ḟ =
(1− f)ε̇p,m. The user has to give the initial value of porosity.

• A flag telling the choice for the pressure evolution type:

0: without pressure Pb = 0

1: with no pressure evolution. The user has to enter the pressure value Pb,
which will be kept constant during the whole calculation.
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2: with linear pressure evolution. The user has to enter the initial pressure
value Pb0 and the pressure slop Pb1, the pressure Pb evolve linearly with
the time Pb = Pb0 + Pb1t.

3: with tabulated values of the pressure. The evolution of pressure with
the time is specified through a table. The user has to give the number
of points of the table, then a list of pairs of points defining the pres-
sure evolution with the time. Linear extrapolation is done between two
points. for example:

# Number of points
4
# Pairs of points
# (t Pb)
0. 10.0
1. 10.1
3. 11.5
5. 12.0

0 1 2 3 4 5 6 7
p

8

9

10

11

12

13

14

σ
0
(p

)

The extrapolation beyond the last pair is based on the last segment.

Example:

#---------------------------------------------------------
material 0 : Gurson type plasticity:
0 60
# Young’s Modulus
10.0
# Poisson coefficient
0.2
# limit stress
1.0
# coef q3
1.0
# coef q1
1.0
# porosity evolution model
5
#initial porosity
0.045
# bubble pressure evolution model : 1: pressure(t)=pressure(t=0)
1
#
#initial bubble pressure
0.0
#---------------------------------------------------------
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Implementation

An effective porosity is defined as f2 = q1f .

If plasticity is activated (i.e. if F (σT ) > 0, where σT is the trial stress) :

σ̇ = L : (ε̇− ε̇p) = L :

(
ε̇− λ̇

∂F

∂σ

)
This equation is then split into a deviatoric and a hydrostatic part.

The deviatoric part of the equation enables the use of radial return :

σD

(
1 +

6q3µλ̇δt

σ2
0

)
= σD,T (B.25)

The hydrostatic part enables to write λ̇δt as a function of σm (the dash t0 indicates
the value of the preceding time step):

σm − σt0
m = 3kδtε̇m − 9kλ̇f2δt

σ0

sinh

(
3σm

2σ0

)
(B.26)

In the case of a fixed porosity, the following equation, where σm is the only un-
known, is solved with a Müller algorithm :

F (σ) =
3q3
2

(
σD,T : σD,T

σ2
0

) σ2
0

σ2
0 + 6q3µ

(
σ0(3k(εm − εt0m)− (σm − σt0

m))

sinh(3σm

2σ0
)9kf2

)


2

(B.27)

+2f2cosh

(
3σm

2σ0

)
− 1− f 2

2 = 0

Plasticity dependent porosity

For plasticity dependent porosity, the porosity evolution is considered as an strain-
hardening (or softening) mechanisms, which reduces (or expands) the plasticity
surface. A new equation has to be introduced in order to identify the new porosity
: the condition for the associated plastic flow is used :

∂F

∂σ
: σ̇ +

∂F

∂f
: ḟ = 0 =

3f

σ0
sinh

(
3σm
2σ0

)
σ̇m +

3σD
σ2
0

: σ̇D +

(
2cosh

(
3σm
2σ0

)
− 2f

)
ḟ(B.28)

Then, the system composed by the equations B.27 and B.28, with two unknowns,
f and σm is solved through a Newton algorithm.
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List of variables available for image storing

keywords description

stress stress tensor
strain strain tensor
cumulated plastic strain cumulated plastic strain
previous stress stress tensor of the previous step
previous strain strain tensor of the previous step
porosity porosity (*)
previous_porosity porosity of the previous loading step (*)

(*) : available only if porosity evolution model is 5.
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B.9 How to describe a Voce law

Behavior identifier: 50

The Voce constitutive law implemented in CraFT can be described by:

σ = L : (ε− εvp), εvp =
M∑
k=1

γ(k)µ(k), µ(k) = m(k) ⊗s n
(k) (B.29)

where M is the number of slip systems, µ(k) is the Schmid tensor of the k-th slip
system with slip plane normal n(k) and slip direction m(k) (which is orthogonal
to n(k)), and ⊗s indicates the (symmetrical) dyadic product.

The slip-rate γ̇(k) on the k-th system is related to the resolved shear stress τ (k) on
that system through:

γ̇(k) = γ̇
(k)
0

(∣∣τ (k)∣∣
τ
(k)
0

)n(k)

sgn
(
τ (k)
)
, τ (k) = σ : µ(k) (B.30)

where τ (k)0 , the reference resolved shear stress on system k, depends on the activity
of the other systems through:

τ̇
(k)
0 =

[
θ
(k)
sta + e−Γa

(
θ
(k)
ini + aθ

(k)
sta Γ− θ

(k)
sta

)]
ṗ, ṗ =

M∑
ℓ=1

h(k,ℓ)
∣∣γ̇(ℓ)

∣∣ , (B.31)

with a defined by:

a(k) =

∣∣∣∣∣ θ
(k)
ini

τ
(k)
sta − τ

(k)
ini

∣∣∣∣∣ .

Γ is a scalar variable which cumulates the increments of all slip systems.

Γ̇ =
M∑
k=1

∣∣γ̇(k)
∣∣

When all compontents of matrix h are equal to 1, Γ coincides to the term ṗ =∑M
ℓ=1 h

(k,ℓ)
∣∣γ̇(ℓ)

∣∣ appearing in the right member of equation (B.31).

Implementation

The constitutive relation can be formulated as a differential equation:

Ẏ = F (Y , t)

where:
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Y =

 σ
Γ

τ
(k)
0 (k = 1, ...M)


and:

F (Y , t) =



L :

(
ε̇−

M∑
k=1

γ̇(k)(Y )µ(k)

)
M∑
k=1

∣∣γ̇(k)(Y )
∣∣

[
θ
(k)
sta + e−Γ(Y )a

(
θ
(k)
ini + aθ

(k)
sta Γ(Y )− θ

(k)
sta

)] M∑
ℓ=1

h(k,ℓ)
∣∣γ̇(ℓ)(Y )

∣∣


where γ̇(k) is given by relation B.31 .

This system is solved in CraFT by a Runge-Kutta method with fixed step size.

Specification

The user has to enter the following parameters in that order:

• elastic parameters, which has to be entered in the same manner as in the
linear elastic case (see B.3)

• the visco-plastic parameters, i.e.:

- the number M of slip systems,

- for each slip system:

• the vector n orthogonal to the plane of slip (3 coordinates),

• the vector m of the direction of slip in the plane (3 coordinates)

- for each slip system k:

• τ
(k)
ini

• τ
(k)
sta

• θ
(k)
ini

• θ
(k)
sta

• γ̇
(k)
0

• power of the law: n(k)

- the matrix h(k,ℓ) for k = 1, ...,M and ℓ = 1, ...,M
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Example:

###############################################
# Copper material
#
###############################################
# material id: 50 = Voce law
1 50
#----------------------------------------------
# Elastic behavior:
# cubic symmetry:
2
#
133336.666667
27625.
60980.
#----------------------------------------------
# number of slip systems
12
#
# n(i,1) n(i,2) n(i,3) m(i,1) m(i,2) m(i,3) i=1,nsyst

1 1 -1 0 1 1
1 1 -1 1 0 1
1 1 -1 1 -1 0
1 -1 -1 0 1 -1
1 -1 -1 1 0 1
1 -1 -1 1 1 0
1 -1 1 0 1 1
1 -1 1 1 0 -1
1 -1 1 1 1 0
1 1 1 0 1 -1
1 1 1 1 0 -1
1 1 1 1 -1 0

#
#----------------------------------------------
# visco-plastic parameters:
#- - - - - - - - - - - - - - - - - - - - - - -
# system #1:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #2:
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#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #3:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #4:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #5:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #6:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
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1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #7:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #8:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #9:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #10:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
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10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #11:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#- - - - - - - - - - - - - - - - - - - - - - -
# system #12:
#- - - - - - - - - - - - - - - - - - - - - - -
# tau_ini tau_sta:
10. 15.
# theta_ini theta_sta:
1000. 500.
# gamma_dot_0:
1.
# npower:
10.
#----------------------------------------------
# H matrix:
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
###############################################
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B.10 How to describe the behavior of UO2

Behavior identifier: 2021

B.10.1 Constitutive equations of UO2

The constitutive equations of UO2 are supposed to be

σ̇ = C : (ε̇− ε̇vp)

ε̇vp =
∑
s

γ̇sµs

γ̇s = γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
( τs
τ s0

)
− 1

)
sign(τs)

τs = µs : σ

µs =
1

2
(ms ⊗ ns + ns ⊗ms)

(B.32)

with s being the index of the slip systems.

B.10.2 “Behavior” function

For each behaviour law, CraFT expects a function called “behavior” that returns
the stress and takes as arguments the deformation and possible other local me-
chanical variables. Moreover CraFT imposes that the strain of the previous load-
ing step and the increment of time between the previous and the current loading
steps as arguments of behavior function. This can be noted as follows

σ(t) = F(ε(t), ε(t− δt), δt, ...) (B.33)

In the case of UO2 behavior, equations B.32 must be reorganized in order to be
presented as required by CraFT in B.33.

The stress rate is discretized in time as

σ̇ =
σ(t)− σ(t− δt)

δt
(B.34)

Thus

σ(t) = σ(t− δt) + δtC : ε̇− δtC : ε̇vp

= σT − δtC :
∑
s

[
γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
( τs
τ s0

)
− 1

)
sign(τs)µs

]

= σT − δt
∑
s

[
γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
(µs : σ

τ s0

)
− 1

)
sign(µs : σ) C : µs

]
(B.35)
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with the “elastic trial” defined as

σT = σ(t− δt) + δtC : ε̇

= σ(t− δt) +C :
(
ε(t)− ε(t− δt)

) (B.36)

The tensors σ(t−δt), ε(t), ε(t−δt) are supposed to be known, the unknow variable
is σ(t) whose notation will be further simplified into σ. Equation B.35 can be
represented as

F (σ) = 0 (B.37)

with

F (σ) = σ(t)−σT +δt
∑
s

[
γ̇s
0 exp

(
−∆Hs

0

k0T

)(
ch
(µs : σ

τ s0

)
−1

)
sign(µs : σ) C : µs

]
(B.38)

We consider the stress σ and F (σ) as vectors of 6 components that we will note
respectively σi and Fi with i = 1, 2, ..., 6. The Jacobian J of F is a 6 × 6 matrix
given by

Jij =
∂Fi

∂σj

= δij+δt
∑
s

[
γ̇s
0

τ s0
exp

(
−∆Hs

0

k0T

)(
sh
(µs : σ

τ s0

))
sign(µs : σ)

(
C : µs

)
i
µs
j

]
(B.39)

Equation B.37 will be solved using a Newton’s method which reads

σk+1 = σk − J−1(σk) : F (σk) (B.40)

where σk is the k-th evaluation of the stress of the iterative process.

B.10.3 solve_spc0e function

In order to use accelerated schemes (Eyre-Milton scheme, augmented Lagrangian
scheme, Monchiet-Bonnet scheme), an additional function is required by CraFT
that must be able to solve{

σ(t) = F(ε(t), ε(t− δt), δt, ...)

σ(t) +C0 : ε(t) = τ (t)
(B.41)

where τ (t) is a known field of tensor and where the unknowns are σ(t) but also
ε(t). C0 is the rigidity tensor of the reference material. Equations B.41 can be
simply rewritten as {

σ(t) = F(ε(t), ε(t− δt), δt, ...)

ε(t) = S0 :
(
τ (t)− σ(t)

) (B.42)

with S0 = C0−1 the compliance tensor of the reference material.
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In the case of UO2 material, this reads
σ(t) = σ(t− δt) +C :

(
ε(t)− ε(t− δt)

)
−δt

∑
s

[
γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
(

µs:σ
τs0

)
− 1

)
sign(µs : σ) C : µs

]
ε(t) = S0 :

(
τ (t) −σ(t)

)
(B.43)

If one eliminates ε(t), one has

σ(t) = σ(t− δt) +C :
(
S0 :

(
τ (t)− σ(t)

)
− ε(t− δt)

)
−δt

∑
s

[
γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
(

µs:σ
τs0

)
− 1

)
sign(µs : σ) C : µs

]
(B.44)

σ(t) +C : S0 : σ(t) = σ(t− δt) +C :
(
S0 : τ (t)− ε(t− δt)

)
−δt

∑
s

[
γ̇s
0 exp

(
− ∆Hs

0

k0T

)(
ch
(

µs:σ
τs0

)
− 1

)
sign(µs : σ) C : µs

]
(B.45)

We define σT as

σT = σ(t− δt) +C :
(
S0 : τ (t)− ε(t− δt)

)
(B.46)

and F (σ) as

F (σ) = σ(t)+C : S0 : σ(t)−σT+δt
∑
s

[
γ̇s
0 exp

(
−∆Hs

0

k0T

)(
ch
(µs : σ

τ s0

)
−1

)
sign(µs : σ)C : µs

]
(B.47)

The constitutive relation will be solved when

F (σ) = 0 (B.48)

A Newton’s method will used. One introduces the jacobian matrix in a similar
way as above in B.39

Jij =
∂Fi

∂σj

= δij+CikS
0
kj+δt

∑
s

[
γ̇s
0

τ s0
exp

(
−∆Hs

0

k0T

)(
sh
(µs : σ

τ s0

))
sign(µs : σ)

(
C : µs

)
i
µs
j

]
(B.49)

And B.48 is iteratively solved with{
σk+1 = σk − J−1(σk) : F (σk)
εk+1 = S0 :

(
τ (t)− σk+1

) (B.50)

B.10.4 Specification

• Netons’s method
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- value of the convergence threshold (Newton’s method)

• Thermo-elastic parameters

- Ntemp number of temperature values in the following table

- values of temperature (their number must be equal to Ntemp)

- values of C11 (their number must be equal to Ntemp)

- values of C12 (their number must be equal to Ntemp)

- values of C44 (their number must be equal to Ntemp)

• crystalline parameters

- number of families of systems s

- parameters of the 1st family:

◦ number of system for the 1st family

◦ 3 components of ns and 3 components of ms for the 1st system

◦ 3 components of ns and 3 components of ms for the 2d system

◦ ...

◦ γ̇s
0 shear strain of the 1st family

◦ ∆Hs
0 energy of activation of the 1st family

◦ τ s0 reference shear stress of the 1st family

- parameters of the 2d family:

◦ number of system for the 2d family

◦ 3 components of ns and 3 components of ms for the 1st system

◦ 3 components of ns and 3 components of ms for the 2d system

◦ ...

◦ γ̇s shear strain of the 1st family

◦ ∆Hs
0 energy of activation of the 1st family

◦ τ s0 reference shear stress of the 1st family

- ...

B.10.5 Example

#---------------------------------------------------------
# Mat. #2021 is a ThermallyActivated law for UO2
0 2021
#---------------------------------------------------------
# value of the convergence criteria

72



1.e-6
#---------------------------------------------------------
# Cij vs Temperature
# nbElts of the following table
8
# line 1: T ; line 2: C11 ; line 3: C12 ; line 4: C44(Kelvin):
186. 2341 2422 2547 2656 2771 2870 2946
3.93e+11 2.18e+11 2.17e+11 2.01e+11 1.88e+11 1.65e+11 1.43e+11 1.27e+11
1.25e+11 9.26e+10 9.14e+10 8.95e+10 8.79e+10 8.61e+10 8.46e+10 8.35e+10
1.33e+11 9.21e+10 8.82e+10 8.02e+10 7.23e+10 6.36e+10 5.58e+10 4.94e+10
#---------------------------------------------------------
# Number of system family
2
#---------------------------------------------------------
# Number of system for the first family
6
# Slip systems for the first family
## n(i,1) n(i,2) n(i,3) m(i,1) m(i,2) m(i,3)

1 0 0 0 1 1
1 0 0 0 1 -1
0 1 0 1 0 1
0 1 0 1 0 -1
0 0 1 1 -1 0
0 0 1 1 1 0

# Value of the reference shear strain (gampt0) for the first family
4.59e7
# Value of the activation energie (DH0) for the first family
9.16e-19
# Value of the reference shear stress (tau0) for the first family
1.35e6
#---------------------------------------------------------
# Number of system for the second family
6
# Slip systems for the second family
## n(i,1) n(i,2) n(i,3) m(i,1) m(i,2) m(i,3)

0 1 -1 0 1 1
0 1 1 0 1 -1
1 0 -1 1 0 1
1 0 1 1 0 -1
1 1 0 1 -1 0
1 -1 0 1 1 0

# Value of the reference shear strain (gampt0) for the second family
6.83e6
# Value of the activation energie (DH0) for the second family
8.36734693878e-19
# Value of the reference shear stress (tau0) for the second family
4.78e6
#---------------------------------------------------------
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Appendix C Examples

C.1 Examples of loading files

C.1.1 example of creep loading

In the following example of loading specification file, creep loading is prescribed:
macroscopic stress is prescribed (C in the first directive) to be Σ11 = 10 , Σij ̸=11 = 0
at time t = 0.1s and following time steps.

#-------------------------------------
# prescribed stress
C
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
0.2 1. 0. 0. 0. 0. 0. 10.
0.3 1. 0. 0. 0. 0. 0. 10.
0.4 1. 0. 0. 0. 0. 0. 10.
0.5 1. 0. 0. 0. 0. 0. 10.
0.6 1. 0. 0. 0. 0. 0. 10.
0.7 1. 0. 0. 0. 0. 0. 10.
0.8 1. 0. 0. 0. 0. 0. 10.
0.9 1. 0. 0. 0. 0. 0. 10.
1.0 1. 0. 0. 0. 0. 0. 10.

A more concise specification using implied loop notation would be:

#-------------------------------------
# prescribed stress
C
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
:9: 1.0 1. 0. 0. 0. 0. 0. 10.

Remarks:

- The line for time t = 0.1 is necessary as CraFT implies that macroscopic
stress is null at time t = 0.



- The number of implied loops between t = 0.1 (not included) and t = 1
(included) is 9, thus the implied time step is: 0.1 = (1− 0.1)/9.

Another possibility for the same loading conditions would be:

#-------------------------------------
# prescribed stress
C
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -

0.1 1. 0. 0. 0. 0. 0. 10.
%0.1% 1.0 1. 0. 0. 0. 0. 0. 10.

Time steps of implied loops between t = 0.1 and t = 1 being prescribed to 0.1

C.1.2 example of simple traction

In this example, a simple traction is applied in 11 direction (Σ11 ̸= 0 Σij ̸= 11 = 0)
untill E : d = 50 (in other words, untill E11 = 50) at time t = 20; 1000 time steps
are applied.

#-------------------------------------
# prescribed direction of stress
S
#-------------------------------------
# loading
# t direction k
# 11 22 33 12 13 23
#- - - - - - - - - - - - - - - - - - -
:1000: 20. 1. 0. 0. 0. 0. 0. 50.
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Appendix D Infinitesimal rotation tensor

The infinitesimal rotation tensor can be defined as:

ω =
1

2
(∇u−∇uT )

which can be detailed as:

ω =

 0 1
2
(∂u1

∂x2
− ∂u2

∂x1
) 1

2
(∂u1

∂x3
− ∂u3

∂x1
)

1
2
(∂u2

∂x1
− ∂u1

∂x2
) 0 1

2
(∂u2

∂x3
− ∂u3

∂x2
)

1
2
(∂u3

∂x1
− ∂u1

∂x3
) 1

2
(∂u3

∂x2
− ∂u2

∂x3
) 0


ω is an anti-symmetrical 2d order tensor with only 3 independent components γ1,
γ2, γ3, defined as: 

γ1 = 1
2
(∂u3

∂x2
− ∂u2

∂x3
)

γ2 = 1
2
(∂u1

∂x3
− ∂u3

∂x1
)

γ3 = 1
2
(∂u2

∂x1
− ∂u1

∂x2
)

Therefore, the rotation tensor can read as:

ω =

 0 −γ3 γ2
γ3 0 −γ1
−γ2 γ1 0


One can defined a vector Ω as:

Ω =

γ1
γ2
γ3

 .

Thus, the rotation applied to a given vector u can be expressed either as:

ωu

or as:
Ω× u

CraFT saves images of the rotation in the shape of 3d vector images containing
the 3 components of Ω.
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